The Words Themselves: A Content-Based Approach to Quote Attribution

paper, specified "short paper"
  1. 1. Adam Hammond

    University of Toronto

  2. 2. Krishnapriya Vishnubhotla

    University of Toronto

  3. 3. Graeme Hirst

    University of Toronto

Work text
This plain text was ingested for the purpose of full-text search, not to preserve original formatting or readability. For the most complete copy, refer to the original conference program.

Quote attribution is the identification of the speaker of a quotation in a given text. It requires reasoning about conversational patterns and contextual clues, and is especially complex in literary texts. We present a semi-supervised iterative classification approach to quote attribution that is based on ideas from computational stylometry, using the content of the quotation to distinguish between speakers. We achieve an accuracy of 77.3% on the QuoteLi quote attribution corpus. Despite certain limitations, we show that our method is a competitive alternative to systems based on contextual clues, and a viable complement to them.

If this content appears in violation of your intellectual property rights, or you see errors or omissions, please reach out to Scott B. Weingart to discuss removing or amending the materials.

Conference Info

In review

ADHO - 2020
"carrefours / intersections"

Hosted at Carleton University, Université d'Ottawa (University of Ottawa)

Ottawa, Ontario, Canada

July 20, 2020 - July 25, 2020

475 works by 1078 authors indexed

Conference cancelled due to coronavirus. Online conference held at Data for this conference were initially prepared and cleaned by May Ning.

Conference website:


Series: ADHO (15)

Organizers: ADHO